svFSIplus
Public Member Functions | Public Attributes | List of all members
CepModTtp Class Reference

This module defines data structures for ten Tusscher-Panfilov epicardial cellular activation model for cardiac electrophysiology. More...

#include <CepModTtp.h>

Public Member Functions

 CepModTtp ()
 
void actv_strn (const double c_Ca, const double I4f, const double dt, double &gf)
 Compute macroscopic fiber strain based on sacromere force-length relationship and calcium concentration. More...
 
void actv_strs (const double c_Ca, const double dt, double &Tact, double &epsX)
 
void getf (const int i, const int nX, const int nG, const Vector< double > &X, const Vector< double > &Xg, Vector< double > &dX, const double I_stim, const double K_sac, Vector< double > &RPAR)
 Compute currents and time derivatives of state variables. More...
 
void getj (const int i, const int nX, const int nG, const Vector< double > &X, const Vector< double > &Xg, Array< double > &JAC, const double Ksac)
 
void init (const int imyo, const int nX, const int nG, Vector< double > &X, Vector< double > &Xg)
 
void init (const int imyo, const int nX, const int nG, Vector< double > &X, Vector< double > &Xg, Vector< double > &X0, Vector< double > &Xg0)
 
void integ_cn2 (const int imyo, const int nX, const int nG, Vector< double > &X, Vector< double > &Xg, const double Ts, const double dt, const double Istim, const double Ksac, Vector< int > &IPAR, Vector< double > &RPAR)
 Time integration performed using Crank-Nicholson method. More...
 
void integ_fe (const int imyo, const int nX, const int nG, Vector< double > &X, Vector< double > &Xg, const double Ts, const double dt, const double Istim, const double Ksac, Vector< double > &RPAR)
 
void integ_rk (const int imyo, const int nX, const int nG, Vector< double > &X, Vector< double > &Xg, const double Ts, const double dt, const double Istim, const double Ksac, Vector< double > &RPAR)
 
void update_g (const int i, const double dt, const int n, const int nG, const Vector< double > &X, Vector< double > &Xg)
 Update all the gating variables. More...
 

Public Attributes

double Rc = 8314.472
 Gas constant [J/mol/K]. More...
 
double Tc = 310.0
 Temperature [K]. More...
 
double Fc = 96485.3415
 Faraday constant [C/mmol]. More...
 
double Cm = 0.185
 Cell capacitance per unit surface area [uF/cm^{2}]. More...
 
double sV = 0.2
 Surface to volume ratio [um^{-1}]. More...
 
double rho = 162.0
 Cellular resistivity [ $\Omega$-cm]. More...
 
double V_c = 16.404E-3
 Cytoplasmic volume [um^{3}]. More...
 
double V_sr = 1.094E-3
 Sacroplasmic reticulum volume [um^{3}]. More...
 
double V_ss = 5.468E-5
 Subspace volume [um^{3}]. More...
 
double K_o = 5.4
 Extracellular K concentration [mM]. More...
 
double Na_o = 140.0
 Extracellular Na concentration [mM]. More...
 
double Ca_o = 2.0
 Extracellular Ca concentration [mM]. More...
 
double G_Na = 14.838
 Maximal I_Na conductance [nS/pF]. More...
 
double G_K1 = 5.405
 Maximal I_K1 conductance [nS/pF]. More...
 
Vector< double > G_to = {0.294, 0.073, 0.294}
 Maximal epicardial I_to conductance [nS/pF]. More...
 
double G_Kr = 0.153
 Maximal I_Kr conductance [nS/pF]. More...
 
Vector< double > G_Ks = {0.392, 0.392, 0.098}
 Maximal epicardial I_Ks conductance [nS/pF]. More...
 
double p_KNa = 3.E-2
 Relative I_Ks permeability to Na [-]. More...
 
double G_CaL = 3.98E-5
 Maximal I_CaL conductance [cm^{3}/uF/ms]. More...
 
double K_NaCa = 1000.
 Maximal I_NaCa [pA/pF]. More...
 
double gamma = 0.35
 Voltage dependent parameter of I_NaCa [-]. More...
 
double K_mCa = 1.38
 Ca_i half-saturation constant for I_NaCa [mM]. More...
 
double K_mNai = 87.5
 Na_i half-saturation constant for I_NaCa [mM]. More...
 
double K_sat = 0.1
 Saturation factor for I_NaCa [-]. More...
 
double alpha = 2.5
 Factor enhancing outward nature of I_NaCa [-]. More...
 
double p_NaK = 2.724
 Maximal I_NaK [pA/pF]. More...
 
double K_mK = 1.
 K_o half-saturation constant of I_NaK [mM]. More...
 
double K_mNa = 40.
 Na_i half-saturation constant of I_NaK [mM]. More...
 
double G_pK = 1.46E-2
 Maximal I_pK conductance [nS/pF]. More...
 
double G_pCa = 0.1238
 Maximal I_pCa conductance [pA/pF]. More...
 
double K_pCa = 5.E-4
 Half-saturation constant of I_pCa [mM]. More...
 
double G_bNa = 2.9E-4
 Maximal I_bNa conductance [nS/pF]. More...
 
double G_bCa = 5.92E-4
 Maximal I_bCa conductance [nS/pF]. More...
 
double Vmax_up = 6.375E-3
 Maximal I_up conductance [mM/ms]. More...
 
double K_up = 2.5E-4
 Half-saturation constant of I_up [mM]. More...
 
double V_rel = 0.102
 Maximal I_rel conductance [mM/ms]. More...
 
double k1p = 0.15
 R to O and RI to I, I_rel transition rate [mM^{-2}/ms]. More...
 
double k2p = 4.5E-2
 O to I and R to RI, I_rel transition rate [mM^{-1}/ms]. More...
 
double k3 = 6.E-2
 O to R and I to RI, I_rel transition rate [ms^{-1}]. More...
 
double k4 = 5.E-3
 I to O and Ri to I, I_rel transition rate [ms^{-1}]. More...
 
double EC = 1.5
 Ca_sr half-saturation constant of k_casr [mM]. More...
 
double max_sr = 2.5
 Maximum value of k_casr [-]. More...
 
double min_sr = 1.
 Minimum value of k_casr [-]. More...
 
double V_leak = 3.6E-4
 Maximal I_leak conductance [mM/ms]. More...
 
double V_xfer = 3.8E-3
 Maximal I_xfer conductance [mM/ms]. More...
 
double Buf_c = 0.2
 Total cytoplasmic buffer concentration [mM]. More...
 
double K_bufc = 1.E-3
 Ca_i half-saturation constant for cytplasmic buffer [mM]. More...
 
double Buf_sr = 10.
 Total sacroplasmic buffer concentration [mM]. More...
 
double K_bufsr = 0.3
 Ca_sr half-saturation constant for subspace buffer [mM]. More...
 
double Buf_ss = 0.4
 Total subspace buffer concentration [mM]. More...
 
double K_bufss = 2.5E-4
 Ca_ss half-saturation constant for subspace buffer [mM]. More...
 
double Vrest = -85.23
 Resting potential [mV]. More...
 
double Ca_rest = 5.E-5
 Resting Ca concentration [mM]. More...
 
double Ca_crit = 8.E-4
 Critical Ca concentration [mM]. More...
 
double eta_T = 12.5
 Saturation of concentration [MPa/mM]. More...
 
double eps_0 = 0.1
 Minimum activation [ms^{-1}]. More...
 
double eps_i = 1.
 Maximum activation [ms^{-1}]. More...
 
double xi_T = 4.E3
 Transition rate [mM^{-1}]. More...
 
double alFa = -4.E6
 Active force of sacromere [-mM^{-2}]. More...
 
double c_Ca0 = 2.155E-4
 Resting Ca concentration [mM]. More...
 
double mu_Ca = 5.E6
 Viscous-type constant [ms-mM^{-2}]. More...
 
double SL0 = 1.95
 Initial length of sacromeres [um]. More...
 
double SLmin = 1.7
 Min. length of sacromeres [um]. More...
 
double SLmax = 2.6
 Max. length of sacromeres [um]. More...
 
double f0 = -4333.618335582119
 Fourier coefficients. More...
 
double fc1 = 2570.395355352195
 
double fs1 = -2051.827278991976
 
double fc2 = 1329.53611689133
 
double fs2 = 302.216784558222
 
double fc3 = 104.943770305116
 
double fs3 = 218.375174229422
 
double Vscale = 1.
 Voltage scaling. More...
 
double Tscale = 1.
 Time scaling. More...
 
double Voffset = 0.
 Voltage offset parameter. More...
 
double E_Na
 Reverse potentials for Na, K, Ca. More...
 
double E_K
 
double E_Ca
 
double E_Ks
 
double I_Na
 Fast sodium current. More...
 
double I_K1
 inward rectifier outward current More...
 
double I_to
 transient outward current More...
 
double I_Kr
 rapid delayed rectifier current More...
 
double I_Ks
 slow delayed rectifier current More...
 
double I_CaL
 L-type Ca current. More...
 
double I_NaCa
 Na-Ca exchanger current. More...
 
double I_NaK
 Na-K pump current. More...
 
double I_pCa
 plateau Ca current More...
 
double I_pK
 plateau K current More...
 
double I_bCa
 background Ca current More...
 
double I_bNa
 background Na current More...
 
double I_leak
 sacroplasmic reticulum Ca leak current More...
 
double I_up
 sacroplasmic reticulum Ca pump current More...
 
double I_rel
 Ca induced Ca release current. More...
 
double I_xfer
 diffusive Ca current More...
 
double V
 
double K_i
 
double Na_i
 
double Ca_i
 
double Ca_ss
 
double Ca_sr
 
double R_bar
 
double xr1
 
double xr1i
 
double xr2
 
double xr2i
 
double xs
 
double xsi
 
double m
 
double mi
 
double h
 
double hi
 
double j
 
double ji
 
double d
 
double di
 
double f
 
double fi
 
double f2
 
double f2i
 
double fcass
 
double fcassi
 
double s
 
double si
 
double r
 
double ri
 
double k1
 
double k2
 
double k_casr
 
double O
 
double E_Na_Nai
 
double E_K_Ki
 
double E_Ca_Cai
 
double E_Ks_Ki
 
double E_Ks_Nai
 
double I_Na_V
 
double I_Na_Nai
 
double I_to_V
 
double I_to_Ki
 
double I_K1_V
 
double I_K1_Ki
 
double I_Kr_V
 
double I_Kr_Ki
 
double I_Ks_V
 
double I_Ks_Ki
 
double I_Ks_Nai
 
double I_CaL_V
 
double I_CaL_Cass
 
double I_NaCa_V
 
double I_NaCa_Nai
 
double I_NaCa_Cai
 
double I_NaK_V
 
double I_NaK_Nai
 
double I_pCa_Cai
 
double I_pK_V
 
double I_pK_Ki
 
double I_bCa_V
 
double I_bCa_Cai
 
double I_bNa_V
 
double I_bNa_Nai
 
double I_leak_Cai
 
double I_leak_Casr
 
double I_up_Cai
 
double I_rel_Cass
 
double I_rel_Casr
 
double I_rel_Rbar
 
double I_xfer_Cai
 
double I_xfer_Cass
 
double k_casr_sr
 
double k1_casr
 
double O_Casr
 
double O_Cass
 
double O_Rbar
 

Detailed Description

This module defines data structures for ten Tusscher-Panfilov epicardial cellular activation model for cardiac electrophysiology.

The classes defined here duplicate the data structures in the Fortran TPPMOD module defined in CEPMOD_TTP.f and PARAMS_TPP.f files.

Constructor & Destructor Documentation

◆ CepModTtp()

CepModTtp::CepModTtp ( )

Copyright (c) Stanford University, The Regents of the University of California, and others.

All Rights Reserved.

See Copyright-SimVascular.txt for additional details.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Member Function Documentation

◆ actv_strn()

void CepModTtp::actv_strn ( const double  c_Ca,
const double  I4f,
const double  dt,
double &  gf 
)

Compute macroscopic fiber strain based on sacromere force-length relationship and calcium concentration.

◆ getf()

void CepModTtp::getf ( const int  i,
const int  nX,
const int  nG,
const Vector< double > &  X,
const Vector< double > &  Xg,
Vector< double > &  dX,
const double  I_stim,
const double  K_sac,
Vector< double > &  RPAR 
)

Compute currents and time derivatives of state variables.

Note that is 'i' the myocardium zone id: 1, 2 or 3.

Reproduces Fortran 'GETF()'.

◆ integ_cn2()

void CepModTtp::integ_cn2 ( const int  imyo,
const int  nX,
const int  nG,
Vector< double > &  X,
Vector< double > &  Xg,
const double  Ts,
const double  dt,
const double  Istim,
const double  Ksac,
Vector< int > &  IPAR,
Vector< double > &  RPAR 
)

Time integration performed using Crank-Nicholson method.

◆ update_g()

void CepModTtp::update_g ( const int  i,
const double  dt,
const int  n,
const int  nG,
const Vector< double > &  X,
Vector< double > &  Xg 
)

Update all the gating variables.

Member Data Documentation

◆ alFa

double CepModTtp::alFa = -4.E6

Active force of sacromere [-mM^{-2}].

◆ alpha

double CepModTtp::alpha = 2.5

Factor enhancing outward nature of I_NaCa [-].

◆ Buf_c

double CepModTtp::Buf_c = 0.2

Total cytoplasmic buffer concentration [mM].

◆ Buf_sr

double CepModTtp::Buf_sr = 10.

Total sacroplasmic buffer concentration [mM].

◆ Buf_ss

double CepModTtp::Buf_ss = 0.4

Total subspace buffer concentration [mM].

◆ c_Ca0

double CepModTtp::c_Ca0 = 2.155E-4

Resting Ca concentration [mM].

◆ Ca_crit

double CepModTtp::Ca_crit = 8.E-4

Critical Ca concentration [mM].

◆ Ca_o

double CepModTtp::Ca_o = 2.0

Extracellular Ca concentration [mM].

◆ Ca_rest

double CepModTtp::Ca_rest = 5.E-5

Resting Ca concentration [mM].

◆ Cm

double CepModTtp::Cm = 0.185

Cell capacitance per unit surface area [uF/cm^{2}].

◆ E_Na

double CepModTtp::E_Na

Reverse potentials for Na, K, Ca.

◆ EC

double CepModTtp::EC = 1.5

Ca_sr half-saturation constant of k_casr [mM].

◆ eps_0

double CepModTtp::eps_0 = 0.1

Minimum activation [ms^{-1}].

◆ eps_i

double CepModTtp::eps_i = 1.

Maximum activation [ms^{-1}].

◆ eta_T

double CepModTtp::eta_T = 12.5

Saturation of concentration [MPa/mM].

◆ f0

double CepModTtp::f0 = -4333.618335582119

Fourier coefficients.

◆ Fc

double CepModTtp::Fc = 96485.3415

Faraday constant [C/mmol].

◆ G_bCa

double CepModTtp::G_bCa = 5.92E-4

Maximal I_bCa conductance [nS/pF].

◆ G_bNa

double CepModTtp::G_bNa = 2.9E-4

Maximal I_bNa conductance [nS/pF].

◆ G_CaL

double CepModTtp::G_CaL = 3.98E-5

Maximal I_CaL conductance [cm^{3}/uF/ms].

◆ G_K1

double CepModTtp::G_K1 = 5.405

Maximal I_K1 conductance [nS/pF].

◆ G_Kr

double CepModTtp::G_Kr = 0.153

Maximal I_Kr conductance [nS/pF].

◆ G_Ks

Vector<double> CepModTtp::G_Ks = {0.392, 0.392, 0.098}

Maximal epicardial I_Ks conductance [nS/pF].

◆ G_Na

double CepModTtp::G_Na = 14.838

Maximal I_Na conductance [nS/pF].

◆ G_pCa

double CepModTtp::G_pCa = 0.1238

Maximal I_pCa conductance [pA/pF].

◆ G_pK

double CepModTtp::G_pK = 1.46E-2

Maximal I_pK conductance [nS/pF].

◆ G_to

Vector<double> CepModTtp::G_to = {0.294, 0.073, 0.294}

Maximal epicardial I_to conductance [nS/pF].

◆ gamma

double CepModTtp::gamma = 0.35

Voltage dependent parameter of I_NaCa [-].

◆ I_bCa

double CepModTtp::I_bCa

background Ca current

◆ I_bNa

double CepModTtp::I_bNa

background Na current

◆ I_CaL

double CepModTtp::I_CaL

L-type Ca current.

◆ I_K1

double CepModTtp::I_K1

inward rectifier outward current

◆ I_Kr

double CepModTtp::I_Kr

rapid delayed rectifier current

◆ I_Ks

double CepModTtp::I_Ks

slow delayed rectifier current

◆ I_leak

double CepModTtp::I_leak

sacroplasmic reticulum Ca leak current

◆ I_Na

double CepModTtp::I_Na

Fast sodium current.

◆ I_NaCa

double CepModTtp::I_NaCa

Na-Ca exchanger current.

◆ I_NaK

double CepModTtp::I_NaK

Na-K pump current.

◆ I_pCa

double CepModTtp::I_pCa

plateau Ca current

◆ I_pK

double CepModTtp::I_pK

plateau K current

◆ I_rel

double CepModTtp::I_rel

Ca induced Ca release current.

◆ I_to

double CepModTtp::I_to

transient outward current

◆ I_up

double CepModTtp::I_up

sacroplasmic reticulum Ca pump current

◆ I_xfer

double CepModTtp::I_xfer

diffusive Ca current

◆ k1p

double CepModTtp::k1p = 0.15

R to O and RI to I, I_rel transition rate [mM^{-2}/ms].

◆ k2p

double CepModTtp::k2p = 4.5E-2

O to I and R to RI, I_rel transition rate [mM^{-1}/ms].

◆ k3

double CepModTtp::k3 = 6.E-2

O to R and I to RI, I_rel transition rate [ms^{-1}].

◆ k4

double CepModTtp::k4 = 5.E-3

I to O and Ri to I, I_rel transition rate [ms^{-1}].

◆ K_bufc

double CepModTtp::K_bufc = 1.E-3

Ca_i half-saturation constant for cytplasmic buffer [mM].

◆ K_bufsr

double CepModTtp::K_bufsr = 0.3

Ca_sr half-saturation constant for subspace buffer [mM].

◆ K_bufss

double CepModTtp::K_bufss = 2.5E-4

Ca_ss half-saturation constant for subspace buffer [mM].

◆ K_mCa

double CepModTtp::K_mCa = 1.38

Ca_i half-saturation constant for I_NaCa [mM].

◆ K_mK

double CepModTtp::K_mK = 1.

K_o half-saturation constant of I_NaK [mM].

◆ K_mNa

double CepModTtp::K_mNa = 40.

Na_i half-saturation constant of I_NaK [mM].

◆ K_mNai

double CepModTtp::K_mNai = 87.5

Na_i half-saturation constant for I_NaCa [mM].

◆ K_NaCa

double CepModTtp::K_NaCa = 1000.

Maximal I_NaCa [pA/pF].

◆ K_o

double CepModTtp::K_o = 5.4

Extracellular K concentration [mM].

◆ K_pCa

double CepModTtp::K_pCa = 5.E-4

Half-saturation constant of I_pCa [mM].

◆ K_sat

double CepModTtp::K_sat = 0.1

Saturation factor for I_NaCa [-].

◆ K_up

double CepModTtp::K_up = 2.5E-4

Half-saturation constant of I_up [mM].

◆ max_sr

double CepModTtp::max_sr = 2.5

Maximum value of k_casr [-].

◆ min_sr

double CepModTtp::min_sr = 1.

Minimum value of k_casr [-].

◆ mu_Ca

double CepModTtp::mu_Ca = 5.E6

Viscous-type constant [ms-mM^{-2}].

◆ Na_o

double CepModTtp::Na_o = 140.0

Extracellular Na concentration [mM].

◆ p_KNa

double CepModTtp::p_KNa = 3.E-2

Relative I_Ks permeability to Na [-].

◆ p_NaK

double CepModTtp::p_NaK = 2.724

Maximal I_NaK [pA/pF].

◆ Rc

double CepModTtp::Rc = 8314.472

Gas constant [J/mol/K].

◆ rho

double CepModTtp::rho = 162.0

Cellular resistivity [ $\Omega$-cm].

◆ SL0

double CepModTtp::SL0 = 1.95

Initial length of sacromeres [um].

◆ SLmax

double CepModTtp::SLmax = 2.6

Max. length of sacromeres [um].

◆ SLmin

double CepModTtp::SLmin = 1.7

Min. length of sacromeres [um].

◆ sV

double CepModTtp::sV = 0.2

Surface to volume ratio [um^{-1}].

◆ Tc

double CepModTtp::Tc = 310.0

Temperature [K].

◆ Tscale

double CepModTtp::Tscale = 1.

Time scaling.

◆ V_c

double CepModTtp::V_c = 16.404E-3

Cytoplasmic volume [um^{3}].

◆ V_leak

double CepModTtp::V_leak = 3.6E-4

Maximal I_leak conductance [mM/ms].

◆ V_rel

double CepModTtp::V_rel = 0.102

Maximal I_rel conductance [mM/ms].

◆ V_sr

double CepModTtp::V_sr = 1.094E-3

Sacroplasmic reticulum volume [um^{3}].

◆ V_ss

double CepModTtp::V_ss = 5.468E-5

Subspace volume [um^{3}].

◆ V_xfer

double CepModTtp::V_xfer = 3.8E-3

Maximal I_xfer conductance [mM/ms].

◆ Vmax_up

double CepModTtp::Vmax_up = 6.375E-3

Maximal I_up conductance [mM/ms].

◆ Voffset

double CepModTtp::Voffset = 0.

Voltage offset parameter.

◆ Vrest

double CepModTtp::Vrest = -85.23

Resting potential [mV].

◆ Vscale

double CepModTtp::Vscale = 1.

Voltage scaling.

◆ xi_T

double CepModTtp::xi_T = 4.E3

Transition rate [mM^{-1}].


The documentation for this class was generated from the following files: