svFSIplus
Public Member Functions | Public Attributes | List of all members
CepModAp Class Reference

This module defines data structures for Aliev-Panfilov cellular activation model for cardiac electrophysiology. More...

#include <CepModAp.h>

Public Member Functions

 CepModAp ()
 
void actv_strs (const double X, const double dt, double &Tact, double &epsX)
 Compute activation force for electromechanics based on active stress model. More...
 
void getf (const int n, const Vector< double > &X, Vector< double > &f, const double fext)
 
void getj (const int n, const Vector< double > &X, Array< double > &Jac, const double Ksac)
 
void init (const int nX, Vector< double > &X)
 SUBROUTINE AP_INIT0(nX, X) More...
 
void init (const int nX, Vector< double > &X, double X0)
 SUBROUTINE AP_INITS(nX, X, X0) More...
 
void init (const int nX, Vector< double > &X, Vector< double > &X0)
 SUBROUTINE AP_INITV(nX, X, X0) More...
 
void integ_cn2 (const int nX, Vector< double > &Xn, const double Ts, const double Ti, const double Istim, const double Ksac, Vector< int > &IPAR, Vector< double > &RPAR)
 Time integration performed using Crank-Nicholson method. More...
 
void integ_fe (const int nX, Vector< double > &X, const double Ts, const double Ti, const double Istim, const double Ksac)
 Time integration performed using Forward Euler method. More...
 
void integ_rk (const int nX, Vector< double > &X, const double Ts, const double Ti, const double Istim, const double Ksac)
 Time integration performed using 4th order Runge-Kutta method. More...
 

Public Attributes

double Vscale = 100.0
 Voltage scaling. More...
 
double Tscale = 12.90
 Time scaling. More...
 
double Voffset = -80.0
 Voltage offset parameter. More...
 
double alpha = 1.E-2
 Model parameters. More...
 
double a = 2.E-3
 
double b = 0.150
 
double c = 8.0
 
double mu1 = 0.20
 
double mu2 = 0.30
 
double Vrest = -80.0
 Resting voltage (mV) More...
 
double Vcrit = -30.0
 Critical voltage (mV) More...
 
double eta_T = 5.E-3
 Saturation potential. More...
 
double eps_0 = 0.10
 Minimum activation (ms^{-1}) More...
 
double eps_i = 1.0
 Maximum activation (ms^{-1}) More...
 
double xi_T = 1.0
 Transition rate (mV^{-1}) More...
 
double Cm = 1.0
 Cm: Cell capacitance per unit surface area. More...
 
double sV = 1.0
 sV: Surface to volume ratio More...
 
double rho = 1.0
 rho: Cellular resistivity More...
 

Detailed Description

This module defines data structures for Aliev-Panfilov cellular activation model for cardiac electrophysiology.

Copyright (c) Stanford University, The Regents of the University of California, and others.

All Rights Reserved.

See Copyright-SimVascular.txt for additional details.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The classes defined here duplicate the data structures in the Fortran APMOD module defined in CEPMOD_AP.f and PARAMS_AP.f files.

Constructor & Destructor Documentation

◆ CepModAp()

CepModAp::CepModAp ( )

Copyright (c) Stanford University, The Regents of the University of California, and others.

All Rights Reserved.

See Copyright-SimVascular.txt for additional details.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Member Function Documentation

◆ actv_strs()

void CepModAp::actv_strs ( const double  X,
const double  dt,
double &  Tact,
double &  epsX 
)

Compute activation force for electromechanics based on active stress model.

Replicates 'SUBROUTINE AP_ACTVSTRS(X, dt, Tact, epsX)' defined in 'CEPMOD_AP.f'.

◆ init() [1/3]

void CepModAp::init ( const int  nX,
Vector< double > &  X 
)

SUBROUTINE AP_INIT0(nX, X)

◆ init() [2/3]

void CepModAp::init ( const int  nX,
Vector< double > &  X,
double  X0 
)

SUBROUTINE AP_INITS(nX, X, X0)

◆ init() [3/3]

void CepModAp::init ( const int  nX,
Vector< double > &  X,
Vector< double > &  X0 
)

SUBROUTINE AP_INITV(nX, X, X0)

◆ integ_cn2()

void CepModAp::integ_cn2 ( const int  nX,
Vector< double > &  Xn,
const double  Ts,
const double  Ti,
const double  Istim,
const double  Ksac,
Vector< int > &  IPAR,
Vector< double > &  RPAR 
)

Time integration performed using Crank-Nicholson method.

Replicates 'SUBROUTINE AP_INTEGCN2(nX, Xn, Ts, Ti, Istim, Ksac, IPAR, RPAR)' defined in 'CEPMOD_AP.f'.

◆ integ_fe()

void CepModAp::integ_fe ( const int  nX,
Vector< double > &  X,
const double  Ts,
const double  Ti,
const double  Istim,
const double  Ksac 
)

Time integration performed using Forward Euler method.

Replicates 'SUBROUTINE AP_INTEGFE(nX, X, Ts, Ti, Istim, Ksac)' defined in 'CEPMOD_AP.f'.

◆ integ_rk()

void CepModAp::integ_rk ( const int  nX,
Vector< double > &  X,
const double  Ts,
const double  Ti,
const double  Istim,
const double  Ksac 
)

Time integration performed using 4th order Runge-Kutta method.

Replicates 'SUBROUTINE AP_INTEGRK(nX, X, Ts, Ti, Istim, Ksac)' defined in 'CEPMOD_AP.f'.

Member Data Documentation

◆ alpha

double CepModAp::alpha = 1.E-2

Model parameters.

◆ Cm

double CepModAp::Cm = 1.0

Cm: Cell capacitance per unit surface area.

◆ eps_0

double CepModAp::eps_0 = 0.10

Minimum activation (ms^{-1})

◆ eps_i

double CepModAp::eps_i = 1.0

Maximum activation (ms^{-1})

◆ eta_T

double CepModAp::eta_T = 5.E-3

Saturation potential.

◆ rho

double CepModAp::rho = 1.0

rho: Cellular resistivity

◆ sV

double CepModAp::sV = 1.0

sV: Surface to volume ratio

◆ Tscale

double CepModAp::Tscale = 12.90

Time scaling.

◆ Vcrit

double CepModAp::Vcrit = -30.0

Critical voltage (mV)

◆ Voffset

double CepModAp::Voffset = -80.0

Voltage offset parameter.

◆ Vrest

double CepModAp::Vrest = -80.0

Resting voltage (mV)

◆ Vscale

double CepModAp::Vscale = 100.0

Voltage scaling.

◆ xi_T

double CepModAp::xi_T = 1.0

Transition rate (mV^{-1})


The documentation for this class was generated from the following files: