6#include "eigen3/Eigen/Core"
7#include "eigen3/Eigen/Dense"
8#include "eigen3/unsupported/Eigen/CXX11/Tensor"
25 using Matrix = Eigen::Matrix<double, nsd, nsd>;
28 using Tensor = Eigen::TensorFixedSize<double, Eigen::Sizes<nsd, nsd, nsd, nsd>>;
31 template <
typename MatrixType>
32 MatrixType convert_to_eigen_matrix(
const Array<double>& src) {
34 for (
int i = 0; i < mat.rows(); ++i)
35 for (
int j = 0; j < mat.cols(); ++j)
36 mat(i, j) = src(i, j);
41 template <
typename MatrixType>
42 void convert_to_array(
const MatrixType& mat, Array<double>& dest) {
43 for (
int i = 0; i < mat.rows(); ++i)
44 for (
int j = 0; j < mat.cols(); ++j)
45 dest(i, j) = mat(i, j);
49 template <
typename MatrixType>
50 void copy_Dm(
const MatrixType& mat, Array<double>& dest,
int rows,
int cols) {
51 for (
int i = 0; i < rows; ++i)
52 for (
int j = 0; j < cols; ++j)
53 dest(i, j) = mat(i, j);
57 Eigen::Matrix<double, nsd, 1> cross_product(
const Eigen::Matrix<double, nsd, 1>& u,
const Eigen::Matrix<double, nsd, 1>& v) {
58 if constexpr (nsd == 2) {
59 return Eigen::Matrix<double, 2, 1>(v(1), - v(0));
61 else if constexpr (nsd == 3) {
65 throw std::runtime_error(
"[cross_product] Invalid number of spatial dimensions '" + std::to_string(nsd) +
"'. Valid dimensions are 2 or 3.");
69 double mat_ddot(
const Array<double>& A,
const Array<double>& B,
const int nd);
72 double double_dot_product(
const Matrix<nsd>& A,
const Matrix<nsd>& B) {
73 return A.cwiseProduct(B).sum();
76 double mat_det(
const Array<double>& A,
const int nd);
77 Array<double> mat_dev(
const Array<double>& A,
const int nd);
81 Array<double> mat_id(
const int nsd);
82 Array<double>
mat_inv(
const Array<double>& A,
const int nd,
bool debug =
false);
83 Array<double>
mat_inv_ge(
const Array<double>& A,
const int nd,
bool debug =
false);
84 Array<double>
mat_inv_lp(
const Array<double>& A,
const int nd);
87 Array<double>
mat_mul(
const Array<double>& A,
const Array<double>& B);
88 void mat_mul(
const Array<double>& A,
const Array<double>& B, Array<double>& result);
89 void mat_mul6x3(
const Array<double>& A,
const Array<double>& B, Array<double>& C);
91 Array<double>
mat_symm(
const Array<double>& A,
const int nd);
94 double mat_trace(
const Array<double>& A,
const int nd);
107 double_dot_product(
const Tensor<nsd>& A,
const std::array<int, 2>& dimsA,
108 const Tensor<nsd>& B,
const std::array<int, 2>& dimsB) {
111 Eigen::array<Eigen::IndexPair<int>, 2> contractionDims = {
112 Eigen::IndexPair<int>(dimsA[0], dimsB[0]),
113 Eigen::IndexPair<int>(dimsA[1], dimsB[1])
117 return A.contract(B, contractionDims);
140 for (
int i = 0; i < nsd; ++i) {
141 for (
int j = 0; j < nsd; ++j) {
142 for (
int k = 0; k < nsd; ++k) {
143 for (
int l = 0; l < nsd; ++l) {
144 C(i,j,k,l) = A(i,j) * B(k,l);
172 for (
int i = 0; i < nsd; ++i) {
173 for (
int j = 0; j < nsd; ++j) {
198 for (
int i = 0; i < nsd; ++i) {
199 for (
int j = 0; j < nsd; ++j) {
200 for (
int k = 0; k < nsd; ++k) {
201 for (
int l = 0; l < nsd; ++l) {
202 C(i,j,k,l) = 0.5 * (A(i,k) * B(j,l) + A(i,l) * B(j,k));
231 for (
int i = 0; i < nsd; ++i) {
232 for (
int j = 0; j < nsd; ++j) {
233 for (
int k = 0; k < nsd; ++k) {
234 for (
int l = 0; l < nsd; ++l) {
235 B(i,j,k,l) = A(k,l,i,j);
244 Array<double>
transpose(
const Array<double>& A);
The Tensor4 template class implements a simple interface to 4th order tensors.
Definition Tensor4.h:18
The Vector template class is used for storing int and double data.
Definition Vector.h:23
The classes defined here duplicate the data structures in the Fortran MATFUN module defined in MATFUN...
Definition mat_fun.cpp:14
Tensor< nsd > symmetric_dyadic_product(const Matrix< nsd > &A, const Matrix< nsd > &B)
Create a 4th order tensor from symmetric outer product of two matrices: C_ijkl = 0....
Definition mat_fun.h:192
void ten_init(const int nd)
Initialize tensor index pointer.
Definition mat_fun.cpp:760
Tensor4< double > ten_symm_prod(const Array< double > &A, const Array< double > &B, const int nd)
Create a 4th order tensor from symmetric outer product of two matrices.
Definition mat_fun.cpp:852
Array< double > ten_mddot(const Tensor4< double > &A, const Array< double > &B, const int nd)
Double dot product of a 4th order tensor and a 2nd order tensor.
Definition mat_fun.cpp:822
Array< double > mat_symm(const Array< double > &A, const int nd)
Symmetric part of a matrix, S = (A + A.T)/2.
Definition mat_fun.cpp:555
Tensor4< double > ten_ids(const int nd)
Create a 4th order order symmetric identity tensor.
Definition mat_fun.cpp:803
Array< double > transpose(const Array< double > &A)
Reproduces Fortran TRANSPOSE.
Definition mat_fun.cpp:888
Vector< double > mat_mul(const Array< double > &A, const Vector< double > &v)
Multiply a matrix by a vector.
Definition mat_fun.cpp:466
double mat_trace(const Array< double > &A, const int nd)
Trace of second order matrix of rank nd.
Definition mat_fun.cpp:587
Tensor4< double > ten_ddot(const Tensor4< double > &A, const Tensor4< double > &B, const int nd)
Double dot product of 2 4th order tensors T_ijkl = A_ijmn * B_klmn.
Definition mat_fun.cpp:626
Tensor4< double > ten_dyad_prod(const Array< double > &A, const Array< double > &B, const int nd)
Create a 4th order tensor from outer product of two matrices.
Definition mat_fun.cpp:784
Array< double > mat_inv_lp(const Array< double > &A, const int nd)
This function computes inverse of a square matrix using Lapack functions (DGETRF + DGETRI)
Definition mat_fun.cpp:396
Array< double > mat_inv(const Array< double > &A, const int nd, bool debug)
This function computes inverse of a square matrix.
Definition mat_fun.cpp:109
Array< double > mat_inv_ge(const Array< double > &Ain, const int n, bool debug)
This function computes inverse of a square matrix using Gauss Elimination method.
Definition mat_fun.cpp:166
Array< double > mat_symm_prod(const Vector< double > &u, const Vector< double > &v, const int nd)
Create a matrix from symmetric product of two vectors.
Definition mat_fun.cpp:572
Array< double > mat_dyad_prod(const Vector< double > &u, const Vector< double > &v, const int nd)
Create a matrix from outer product of two vectors.
Definition mat_fun.cpp:81
Tensor< nsd > fourth_order_identity()
Create a 4th order identity tensor: I_ijkl = 0.5 * (δ_ik * δ_jl + δ_il * δ_jk)
Definition mat_fun.h:166
double mat_ddot(const Array< double > &A, const Array< double > &B, const int nd)
Double dot product of 2 square matrices.
Definition mat_fun.cpp:20
Tensor4< double > ten_ddot_2412(const Tensor4< double > &A, const Tensor4< double > &B, const int nd)
T_ijkl = A_imjn * B_mnkl.
Definition mat_fun.cpp:671
Tensor4< double > ten_asym_prod12(const Array< double > &A, const Array< double > &B, const int nd)
Create a 4th order tensor from antisymmetric outer product of two matrices.
Definition mat_fun.cpp:604
Tensor< nsd > dyadic_product(const Matrix< nsd > &A, const Matrix< nsd > &B)
Compute the dyadic product of two 2nd order tensors A and B, C_ijkl = A_ij * B_kl.
Definition mat_fun.h:135