svMultiPhysics
Tensor4.h
1 /* Copyright (c) Stanford University, The Regents of the University of California, and others.
2  *
3  * All Rights Reserved.
4  *
5  * See Copyright-SimVascular.txt for additional details.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining
8  * a copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sublicense, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject
13  * to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
19  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
21  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
22  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
25  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
26  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
27  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef TENSOR4_H
32 #define TENSOR4_H
33 
34 #include <cstring>
35 #include <iostream>
36 
37 #ifdef ENABLE_ARRAY_INDEX_CHECKING
38 #define Tensor4_check_enabled
39 #endif
40 
41 /// @brief The Tensor4 template class implements a simple interface to 4th order tensors.
42 //
43 template<typename T>
44 class Tensor4
45 {
46  static bool show_index_check_message;
47 
48  public:
49  std::string name_ = "";
50  int ni_ = 0;
51  int nj_ = 0;
52  int nk_ = 0;
53  int nl_ = 0;
54  int p1_ = 0;
55  int p2_ = 0;
56  int size_ = 0;
57  T *data_ = nullptr;
58 
59  Tensor4()
60  {
61  std::string name_ = "";
62  int ni_ = 0;
63  int nj_ = 0;
64  int nk_ = 0;
65  int nl_ = 0;
66  int p1_ = 0;
67  int p2_ = 0;
68  int size_ = 0;
69  T *data_ = nullptr;
70  };
71 
72  Tensor4(const int num_i, const int num_j, const int num_k, const int num_l)
73  {
74  allocate(num_i, num_j, num_k, num_l);
75  }
76 
77  ~Tensor4()
78  {
79  //std::cout << "- - - - - Tensor4 dtor - - - - - " << std::endl;
80  if (data_ != nullptr) {
81  //std::cout << "[Tensor4 dtor] delete[] data: " << data_ << std::endl;
82  delete [] data_;
83  data_ = nullptr;
84  }
85  }
86 
87  // Copy
88  Tensor4(const Tensor4& rhs)
89  {
90  if (rhs.ni_ <= 0 || rhs.nj_ <= 0 || rhs.nk_ <= 0 || rhs.nl_ <= 0) {
91  return;
92  }
93  allocate(rhs.ni_, rhs.nj_, rhs.nk_, rhs.nl_);
94  memcpy(data_, rhs.data_, size_*sizeof(T));
95  }
96 
97  int num_i() { return ni_; }
98  int num_j() { return nj_; }
99  int num_k() { return nk_; }
100  int num_l() { return nl_; }
101 
102  // Tensor4 assignment.
103  //
104  Tensor4& operator=(const Tensor4& rhs)
105  {
106  if (this == &rhs) {
107  return *this;
108  }
109 
110  if (rhs.ni_ <= 0 || rhs.nj_ <= 0 || rhs.nk_ <= 0 || rhs.nl_ <= 0) {
111  return *this;
112  }
113 
114  if (ni_ != rhs.ni_ || nj_ != rhs.nj_ || nk_ != rhs.nk_ || nl_ != rhs.nl_ <= 0) {
115  clear();
116  //delete [] data_;
117  //data_ = nullptr;
118  allocate(rhs.ni_, rhs.nj_, rhs.nk_, rhs.nl_);
119  }
120 
121  memcpy(data_, rhs.data_, sizeof(T) * size_);
122  return *this;
123  }
124 
125  Tensor4& operator=(const double value)
126  {
127  for (int i = 0; i < size_; i++) {
128  data_[i] = value;
129  }
130  return *this;
131  }
132 
133  void write(const std::string& label, bool memory=true, T offset={}) const
134  {
135  int n = 0;
136  char file_prefix[1000];
137  for (auto c : label) {
138  if (c == '[') {
139  continue;
140  }
141  if (c == ']') {
142  file_prefix[n] = '_';
143  n += 1;
144  continue;
145  }
146  if (c == ' ') {
147  continue;
148  }
149  if (c == ':') {
150  c = '_';
151  }
152  file_prefix[n] = c;
153  n += 1;
154  }
155  file_prefix[n] = '\0';
156 
157  FILE* fp;
158  std::string file_name;
159 
160  // Write binary file.
161  file_name = std::string(file_prefix) + "_cm.bin";
162  std::cout << "[Tensor4::write] file_name: " << file_name << std::endl;
163  fp = fopen(file_name.c_str(), "wb");
164  fwrite(&size_, sizeof(int), 1, fp);
165  fwrite(data_, sizeof(double), size_, fp);
166  fclose(fp);
167  }
168 
169  friend std::ostream& operator << (std::ostream& out, const Tensor4<T>& lhs)
170  {
171  for (int i = 0; i < lhs.size_; i++) {
172  out << lhs.data_[i];
173  if (i != lhs.size_-1) {
174  out << ", ";
175  }
176  }
177  return out;
178  }
179 
180  //----------
181  // allocate
182  //----------
183  //
184  void allocate(const int num_i, const int num_j, const int num_k, const int num_l)
185  {
186  //std::cout << "----- Tensor4::allocate -----" << std::endl;
187  ni_ = num_i;
188  nj_ = num_j;
189  nk_ = num_k;
190  nl_ = num_l;
191  p1_ = num_i * num_j;
192  p2_ = p1_ * num_l;
193  size_ = ni_ * nj_ * nk_ * nl_;
194  data_ = new T [size_];
195  memset(data_, 0, sizeof(T)*size_);
196  //std::cout << "[Tensor4::allocate] data_: " << data_ << std::endl;
197  }
198 
199  //-------------
200  // check_index
201  //-------------
202  //
203  void check_index(const int i, const int j, const int k, const int l) const
204  {
205  if (show_index_check_message) {
206  std::cout << "[Tensor4] **********************************" << std::endl;
207  std::cout << "[Tensor4] WARNING: Index checking is enabled " << std::endl;
208  std::cout << "[Tensor4] **********************************" << std::endl;
209  show_index_check_message = false;
210  }
211 
212  if (data_ == nullptr) {
213  throw std::runtime_error(name_+"Accessing null data in Tensor4.");
214  }
215  if ((i < 0) || (i >= ni_) || (j < 0) || (j >= nj_) || (k < 0) || (k >= nk_) || (l < 0) || (l >= nl_)) {
216  auto i_str = std::to_string(ni_);
217  auto j_str = std::to_string(nj_);
218  auto k_str = std::to_string(nk_);
219  auto l_str = std::to_string(nl_);
220  auto dims = i_str + " x " + j_str + " x " + k_str + " x " + l_str;
221  auto index_str = " " + std::to_string(i) + "," + std::to_string(j) + "," + std::to_string(k) + "," + std::to_string(l);
222  throw std::runtime_error("Index (i,j,k,l)=" + index_str + " is out of bounds for " + dims + " array.");
223  }
224  }
225 
226  //-------
227  // clear
228  //-------
229  // Free the array data.
230  //
231  // This is to replicate the Fortran DEALLOCATE().
232  //
233  void clear()
234  {
235  //std::cout << "----- Tensor4::erase -----" << std::endl;
236  if (data_ != nullptr) {
237  //std::cout << "[Tensor4::erase] data_: " << data_ << std::endl;
238  delete [] data_;
239  }
240 
241  ni_ = 0;
242  nj_ = 0;
243  nk_ = 0;
244  nl_ = 0;
245  p1_ = 0;
246  p2_ = 0;
247  size_ = 0;
248  data_ = nullptr;
249  }
250 
251  //--------
252  // resize
253  //--------
254  // Resize the array.
255  //
256  void resize(const int num_i, const int num_j, const int num_k, const int num_l)
257  {
258  if (data_ != nullptr) {
259  //std::cout << "[Tensor4::resize] data_: " << data_ << std::endl;
260  delete [] data_;
261  data_ = nullptr;
262  }
263 
264  allocate(num_i, num_j, num_k, num_l);
265  }
266 
267  /////////////////////////
268  // O p e r a t o r s //
269  /////////////////////////
270 
271  const T& operator()(const int i, const int j, const int k, const int l) const
272  {
273  #ifdef Tensor4_check_enabled
274  check_index(i, j, k , l);
275  #endif
276  return data_[i + j*ni_ + p1_*k + p2_*l ];
277  }
278 
279  T& operator()(const int i, const int j, const int k, const int l)
280  {
281  #ifdef Tensor4_check_enabled
282  check_index(i, j, k , l);
283  #endif
284  return data_[i + j*ni_ + p1_*k + p2_*l ];
285  }
286 
287  ///////////////////////////////////////////////////
288  // M a t h e m a t i c a l o p e r a t o r s //
289  ///////////////////////////////////////////////////
290 
291  // Multiply by a scalar.
292  //
293  Tensor4<T> operator*(const T value) const
294  {
295  Tensor4<T> result(ni_, nj_, nk_, nl_);
296  for (int i = 0; i < size_; i++) {
297  result.data_[i] = value * data_[i];
298  }
299  return result;
300  }
301 
302  friend const Tensor4<T> operator * (const T value, const Tensor4& rhs)
303  {
304  if (rhs.data_ == nullptr) {
305  throw std::runtime_error("Null data for rhs Tensor4.");
306  }
307  Tensor4<T> result(rhs.ni_, rhs.nj_, rhs.nk_, rhs.nl_);
308  for (int i = 0; i < rhs.size_; i++) {
309  result.data_[i] = value * rhs.data_[i];
310  }
311  return result;
312  }
313 
314  // Compound add assignment.
315  //
316  Tensor4<T> operator+=(const Tensor4<T>& rhs) const
317  {
318  for (int i = 0; i < size_; i++) {
319  data_[i] += rhs.data_[i];
320  }
321  return *this;
322  }
323 
324  // Compound subtract assignment.
325  //
326  Tensor4<T> operator-=(const Tensor4<T>& rhs) const
327  {
328  for (int i = 0; i < size_; i++) {
329  data_[i] -= rhs.data_[i];
330  }
331  return *this;
332  }
333 
334  // Add and subtract arrays.
335  //
336  Tensor4<T> operator+(const Tensor4<T>& rhs) const
337  {
338  Tensor4<T> result(rhs.ni_, rhs.nj_, rhs.nk_, rhs.nl_);
339  for (int i = 0; i < size_; i++) {
340  result.data_[i] = data_[i] + rhs.data_[i];
341  }
342  return result;
343  }
344 
345  Tensor4<T> operator-(const Tensor4<T>& rhs) const
346  {
347  Tensor4<T> result(rhs.ni_, rhs.nj_, rhs.nk_, rhs.nl_);
348  for (int i = 0; i < size_; i++) {
349  result.data_[i] = data_[i] - rhs.data_[i];
350  }
351  return result;
352  }
353 
354 };
355 
356 #endif
357 
The Tensor4 template class implements a simple interface to 4th order tensors.
Definition: Tensor4.h:45